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I. [NTRODUCTlOl\

Let E = (E,J, i ~., I, ... , p,j "... 0, 1, ... ,1/, be a rectangular matrix with p
rows (fl I) and q ,+ I columns (q 0) such that each element of it is
either 0 or I. Such a matrix is called an incidence matrix. Let II be the total
number of l"s in E,

I) 1/

,- " L'".n .,' L., L L

1,-,1 i-oil

[n the sequel we assume I q 11 - I.
Let H be an n-dimensional subspace of C"(a. h). the space of q-times

continuously differentiable real functions defined on an open interval (a, h).
Select arbitrarily a set of p nodes, Xl <. X 2 Xl' • from (a, b). Further.
corresponding to each (i, j) for which Eli I. select an arbitrary number
a(/l.

\Ve consider the following Hermite-Birkholl inlerpolation prohlem. Find
a function It E H which satisfies the 11 interpolatory conditions:

(I)
() d'llII J (Xi) ~~ -I"~ -..' (X,)

I X'

whenever E u I: 1. 2..... p. O. 1,. ... q.

We shall say that E is poised with respect to H all (a. h) if there always exists
a unique solution to the above problem, regardless of the choice of the nodes
Xl ..... XI' and the numbers a)j).

Work on this paper was supported in part by Grant DA-ARO(D)-31-124-GI050,
Army Research Office, Durham, and by National Science Foundation Grant GP-23655
awarded to The University of Texas at Austin.
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We now mention a number of relevant papers related to our main result.
which is given in the next section. G. P61ya [5], I. J. Schoenberg [7], and
K. Atkinson and A. Sharma [I] consider the case where H-- 77" l' the
space of all polynomials of degree at most n I. The results obtained by
the latter authors contain ours for this special case. I. J. Schoenberg assumes
a Hermite-type condition on £, that is, for icc 1,... , p, E,.'-l I implies
E,.; I. On the other hand, J. W. Matthews [4] proves our main theorem
for the case in which E consists of only two columns (q I) and satisfies
the above Hermite-type condition. W. Haussmann [2], generalizing
Matthews' result but still assuming the Hermite-type condition on E, provides
a simpler proof for Matthews' result and proves further that if

dim H = dim Hill == n(H(]1 {dh;dx : hE HI),

and both H and Hili are Haar subspaces, then E is poised with respect to H
on (a. b). Our main theorem does not include this last fact, even though both
proofs are based on the same known theorem quoted in Sec. 3.

2. MAIN THEOREM

Let H be an n-dimensional subspace of CI(a, b) and satisfy the condition

dim HI',) = dim{hlll)(x) : !z E H) 11 q (q 11 .- 1)

and let HI'!) satisfy the Haar condition on (a, b), i.e., every nonzero function
in HI'I) vanishes at dim HI'1i - I or less distinct points on (a, b). Then, in
order that E be poised with respect to H on (a, b) it is sufficient that E satisfies
the P61ya condition and is conservative.

We say that E satisfies the Polya condition if

where

q I.

"'j-- Ill, (j == 0, I, ... , q),

Jl

111,= I Eli ~= the number of I's in the jth column of E.
leI

In order to define the conservativeness of E, let us first define a sequence in E
as in [I]. A sequence in E is a maximal sequence of I's in any row of E. For
instance, the matrix
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has a sequence {I, I: starting at (I, I )-position. It has seven sequences in all.
For convenience, if a sequence starts at (i,j)-position, we call it the (i,i)­
sequence. A sequence is even or odd depending on whether the number of
I's in this seq uence is even or odd. We say that E is conservative if an arbitrary
sequence (let it be (io, io)-sequence) is either even or else the upper left
portion of E defined by

jE,j:i ioandi io:

and the lower left portion of E defined by

{EI! : i io and i . I
./01

do not simultaneously contain I's. One or both of these sets may be empty.
For instance, the last matrix E is not conservative since the (3, 2)-sequence
{I. I, 1J is odd and the upper Icft portion of E and the lower left portion of E
defined in the above simultaneously contain l's (there are two I's in the
former and one I in the latter). The matrix

E

o I I I
I 0 I I
o I I 0
000 0

o 0
I I
I I
I 0

is conservative. Note that if E satisfies the Hermite-type condition mentioned
in the last section then E is automatically conservative.

Before proceeding to the proof. we note a few simple consequences of the
hypothesis of the main theorem. They arc

(a) dim HI i) n- i (i 0, I, ... , q), where HIiJ {1I1i1(X) : II Cc H::
(b) HIO) H. Hill, .... HI'I) are all Haar subspaces:

(c) H contains polynomials I, x .... , X'I 1

To prove (a), it is enough to prove that

dim filii dim HUlll dim HIi! (i n..... if I).

The proof of this last fact is easy and is omitted. To prove (b), use Rolle's
theorem and (a). Part (c) follows easily from (a).

3. PROOF OF THE MAIN THEOREM

In order to prove the main theorem, it is necessary and sulficient to prove
that the homogeneous system obtained from (I) has only the trivial solution
II === O. Thus let h E If satisfy (I) with all ajil's O. In order to prove h c_~ 0, it is
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enough to prove that hl'lI °and 17 1'1 vanishes on (a, h) at least once for
i 0. I, ... , (1-- I. In order to prove h loi ) 0, it is enough to prove that h I 'Ii

vanishes at least n q( c-cdim HI'!») times on (a, h), counting each douhle zero

twice, on the strength of the following theorem.

THEOREM. ([3, Theorem 4.2, p. 23) and [6, Lemma 3-2, p. 57)) If M is an

m-dimensional Haar suhspace of era, h] and i/ a /ilflction I in M L'Gnishes all
[a. h) at least m times. counting each douhle zero twice, thellI 0011 [a, h].

An interior point c of [a. h] is called a simple zero (resp., a double zero) of
Ieee C[a, b] iff(c) == °and if/changes (resp.. does not change) sign at c in the
sense that

0)

8) with a sufficiently small but fixed
b) andf(c) = 0, then c is a simple

whenever t] E (c - 0, c) and t~ E (c, C -

<5 0. If c is an endpoint (c= a or c

zero by definition.
Let us write £11 for £ to emphasize the fact that the incidence matrix £ is

associated with the function h. In the sequel we shall construct. by induction.
f · 'd . £(11) £ 1:,(1) £1'11 I Ii)a sequence 0 mCl ence matnces ,,'0' = h. -h'll .... , "I.", W lere £h(i,

denotes an incidence matrix associated with hU ), i 0, I, ... , q, in such a way
that the following properties are satisfied:

(i) E,~;~, has one less number of columns than £;,/[;11, , i I, .... q:

(ii) £;,;~, has at least nil's, where we count each I in its right-most

colul11n (and only ill its r~ght-I11ost coluI11n) twice i/ that I illdicates a double
zero 0/17 1"1.

(iii) E,:;;, satisfies the P61ya condition and is conservative, i 0.... , q.

If the indicated sequence of matrices is in fact constructed, then, by (i), the
right-most column of £,;:;) (i = 0, ... , q) always corresponds to the function
17 1'11 and the matrix E;,';:" consists of a single column. Then, by (ii), hi',) vanishes
at least n - q times, counting each double zero twice. Property (iii) implies
that hid, i = 0, ... , q- I. vanishes at least once on (a, b). Thus, the proof
will be complete if we construct the indicated sequence {£;,;~,} satisfying
properties (i)-(iii) in the above.

The incidence matrix E~~,:, = E" satisfies the indicated properties by
definition, where property (i) is satisfied vacuously. Let

that is.

x, {x,: £,.J I},

for

j = 0.1, ... , q:

X,E X,.
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By the P61ya condition, the left-most column of E" contains at least one I.
Hence Xu is not empty. If Ell contains exactly one I. let EI~;:' be defined to be
that matrix which is obtained from Eli by deleting. its left-most column. Then,
E;,;;, clearly satisfies properties (i)-(iii). Thus. suppose that Ell contains .2 or

more l's in its left-most column. Let Xu contain k points. 11 r~ I, .

Hence 17(11) !I(ld O. Take the interval [t] , r~] and let II take

the maximum on it at tl •

max, Ii
11, . 1,1

We may assume I] tl I~. Obviously, !l11/(tl) O. Ilere two separate

cases may arise: (a) tl $ X] and (1J)~] f Xl'
If (a) is the case, then the fact that !l11I(tj) 0 is new information about

hili which is not indicated by FI, . For instance. if

t

il 0 0

1
'" ·\1

EI, 0 0 I I",:! .
I () 0 ] "\1

then X(\ ..= {XI' x:1: and Xl' {Xl:' Since Xl "~l '\:1 (h(td max\,r,.'d 11 ),
tl ff Xl'

If (b) is the case, S=l x," "- Xl for some iu ' By the hypotheses that
11 I~ 11. is the complete enumeration of the nodes appearing in Xu
and by the fact that 'I tl r, . the node Xi does not appear in Xu . This

- 0

means the existence of a (io. 1)-sequence in E/, For instance, if

then Xo {Xl' .\:1: and Xl ~. (Xl' '(2:' It may happen that tl
Now, since Ell is conservative. the last (io. I)-sequel1ce must
this sequence consist of 117 I's (m, even). Then

X 2 (ill .2).
be even. Let

o.

From the fact that h takes a local extremum at ~l ' it follows that ~l is a simple
zero of jz(J), It then follows that ~l is a double zero of !I(2). jzI41, .... him) and is a

simple zero of 11 13 \ ... , h(m-l) (we omit the easy proof of this fact), Since fl is a
double zero of hi"!), it is a simple zero of !I lin 11 provided that hln!) E C], In

other words, if the (io, 1)-sequence under consideration terminates before the
right-most column of Ell , we can write an additional I at the (io , m 1)­

position of Ell ' Otherwise we have 111 c q and ~l is, therefore. a double zero
of hl'd
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We can carry out the same analysis for the rest of the subintervals
[f2 , fa]"", [fk- 1 , fAJ Let t2 , ... , tk-l play similar roles as tl , i.e., f2 < t2 < fa,

h(t2) = max[t2.t3] ! II I , etc. Using these tl ,..., tk-l, we can construct an
incidence matrix E,~~;) for h (1) in an obvious way. For instance, if

l;
0 0

1J

••• Xl

Ell =-=
I I ... x

2

0 \ ... x
3

0 0 •.. X
4

then Xo = {Xl' Xa , X 4 } (11 = Xl , f2 =, X3 , f3 = x4 ) and Xl =, {x2}. The
matrix Ell is conservative and satisfies the P6lya condition. Thus, if tl'F X2 ,

(1)
we take Ell( 1) to be

[!

1 1x,0 o .. , tl
E(l) I \ ... X 3 ,"tt) =

0 o ... t2
0 1 .. , XI

where Xl < x 2 < tl < X 3 (here, of course, the case Xl < tl < X 2 < X 3 may
occur. in which case we can construct E,;~i) similarly). If tl = X 2 , then

l!
I l'r x

'E h1 I I .,. X
3

,,(1) = 0 o ... t2 '
0 1 ... Xl

where tl = X2 and the 1 with an asterisk (*) is new information (h(al(x2) =.= 0).
For yet another case, take

II ° °1'" XlE" == 0 I I .. , X 2 .

1 ° 0 .. , X 3

(1)

If tl = X2(Xl < tl < x3), then we take E"Il) to be

E IJ » --- [1 1*] '" ,-h(I --- ~l.2 ,

where the 1 with an asterisk (*) indicates that X 2 is a double zero of h(2).

From the construction of E:,~i) , we can verify without difficulty that condi­
tions (i)-(iii) are always satisfied for i = 1. In fact, verification of (i) is
trivial. In order to verify (ii) we note that for each pair of consecutive l's in
the left-most column of Ell , a new entry 1 is introduced in E~~i) in addition
to those l's in E~~i) which are already present in E" . In order to verify the

6+0/8/z -4
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. fEll) d I I k h . ~(IJconservatIveness 0 Ii(1J we nee on y to c lee t ose sequences 1I1 Eli II ,

which do not originate in the left-most column of E;,~~, . Each of these sequen­
ces is, therefore, already present in Eli' except perhaps its last term. From this
consideration it is now clear that E;,::, is conservative. There remains only to
show that E;,~~, satisfies the P61ya condition. Suppose the contrary. Then there
would exist a jo such that

but

where I1I;(E;,~~,) denotes the number of l's Il1 the j-th column of EI~~: .
j O. I..... q I. This means that the number of the 1's in E;,~~, contained
to the left and including the jo-th column of Ei~~:' is exactly.i" and that the
.io-th column contains no l·s. Hence the newly introduced entries in EI('~;' (i.e ..
those rs which correspond to ~j • r~ .... )are to be found in EI~~;' to the left of
theiu-th column. But. from the construction. the number of the rs contained
. I fEll). . 1
Il1 t le same area 0 :/i"! IS gIven ))

I'I io 2 ./0

which is a contradiction.
S . . I Il) . '1 I .121 E('II I' h II .tartll1g Wit 1 EI<'" . we can SIITIl ar y construct Elil " ,.... /il'" W llC a salls-

fy conditions (i)-(iii). This completes the proof.

4. RIMARK

Under the hypothesis of the main theorem we can prove that the P(Jlya
condition is necessary in order that E is poised with respect to H on (a. b). The
proof runs in a similar line as in [7. p. 540]. In fact. if the P61ya condition is
not satisfied then there is a.io such that 111 0 111 1 "'f 111'0 .io I with
.io < q. Since 7T'I-l is contained in H (see Sec. 2). so is 7T}o .. It is possible to
find a nontrivial polynomial h(x) Co CjX .. + C , XlO which satisfies
the homogeneous system (l), because, for.i .io 11 iii = 00 is automatically
satisfied and forj jo the numberjo I of unknowns (co ....• Cj) exceeds the
number mo -+ ... _; m,o of equations.
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